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Partition-Ligation–Expectation-Maximization
Algorithm for Haplotype Inference
with Single-Nucleotide Polymorphisms

To the Editor:
The mapping of SNPs in human genomes has generated
a lot of interest from both the biomedical research com-
munity and industry. In conjunction with SNP mapping,
researchers have shown that haplotypes possess consid-
erably greater potential than the traditional single-SNP
approach in disease-gene mapping and in our understand-
ing of complex landscapes of linkage disequilibrium (LD)
(Goldstein 2001). In silico methods for haplotype recon-
struction have attracted much attention because of their
cost-effectiveness and accuracy (Tishkoff et al. 2000) and
have played an important role in the definition of human
haplotype block structure and in candidate-gene studies
of complex traits (Tabor et al. 2002). In a recent publi-
cation, Niu et al. (2002) proposed a partition-ligation (PL)
strategy and implemented it together with Gibbs sam-
pling, to estimate haplotype phases for a large number of
SNPs. Although the resulting program, HAPLOTYPER,
has been in high demand from many research groups, a

significant portion of researchers are also strongly inter-
ested in using an expectation-maximization (EM)–based
algorithm. In the present letter, we describe how to com-
bine the PL strategy with the EM algorithm and how to
handle the local-mode problem. We also present a fast
and robust method of computing the variance of the es-
timated haplotype frequencies. Some related issues con-
cern the handling of missing data and the multiple im-
putations of haplotype phases.

The EM algorithm is arguably the most popular sta-
tistical algorithm, because of its interpretability and sta-
bility. Compared to the Gibbs sampler, the EM approach
is a deterministic procedure, requires less computing time,
and is easier for convergence check. The output of the
EM algorithm, if not trapped in a local mode, is the max-
imum-likelihood estimate (MLE), which possesses well-
established statistical properties. However, the capability
of most EM-based approaches is restricted to approxi-
mately one dozen loci, because of the memory constraint.
A recently developed program, SNPHAP (see David Clay-
ton’s Web site [SNPHAP: A Program for Estimating Fre-
quencies of Large Haplotypes of SNPs]), is an exception
that, although different from the PL strategy, can handle
many more linked loci by using a progressive-extension
technique.

The essential steps of the PL strategy (Niu et al. 2002)
are as follows: One first breaks down all of the marker
loci into stretches of “atomistic” units and then uses either
the EM algorithm or the Gibbs sampler to construct hap-
lotypes for each unit and to rebuild the phase hierarchi-
cally, through a bottom-up approach. For example, an
individual represented in the lipoprotein lipase (LPL)
gene SNP data set (Nickerson et al. 1998) has the ge-
notype (01200001000000000100010), where 0 stands
for heterozygote and 1 and 2 stand for wild-type and
mutant homozygotes, respectively. Since there are 18 het-
erozygous loci, the standard EM algorithm has to con-
sider 218 possible haplotypes, making it extremely costly
for haplotype estimation. Using the PL strategy, we divide
the linked loci into four “atomistic” units—(012000),
(010000), (000001), and (00010)—and use the EM al-
gorithm to estimate partial haplotypes within each unit.
Afterward, two adjacent partial haplotypes are “ligated”
by using the EM algorithm again, just like phasing two
linked multiallelic markers. The ligation process is re-
peated until the complete phase is determined.

It is well known that the EM algorithm can be trapped
in a local mode. This problem becomes a more serious
issue for the PL-EM strategy, because every atomistic hap-
lotype construction or ligation step involves a complete
EM algorithm implementation. A naive implementation
of the ligation step considers only the partial haplotypes
that have nonzero estimated frequencies in the previous
EM step. However, it appears that one phase configura-
tion (and the corresponding haplotypes with nonzero es-
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timated frequencies) is more likely when looking only at
a partial set of loci, whereas a different configuration is
more likely when all loci are taken into consideration.
For example, consider the set of individuals with the fol-
lowing genotype data on four loci—(A/A A/A T/T T/T),
(A/A A/A T/T T/T), (A/A G/G T/T T/T), (A/A G/G C/C
C/C), (A/A G/G C/C C/C), and (A/G A/G T/T T/T). If
just the first two loci are concerned, then the EM algo-
rithm estimates the haplotype frequencies as 7/12, 4/12,
and 1/12, for (AG), (AA), and (GA), respectively. When
all four loci are considered together, however, the EM
gives rise to four haplotypes—(AATT), (AGCC), (AGTT),
and (GGTT), with frequencies 5/12, 4/12, 2/12, and
1/12, respectively. Thus, had we thrown away the (GG)
haplotype prematurely when only the first two SNP mark-
ers were analyzed, we would have not been able to reach
the MLE.

To overcome this difficulty, we devised a “backup-
buffering” strategy during the ligation step. In brief, in
addition to keeping in a buffer those partial haplotypes
that have EM-algorithm–estimated frequencies greater
than a threshold value (e.g., ), we also retain�5e p 10
in the buffer some partial haplotypes whose estimated
frequencies are below e. The criterion for choosing such
a backup partial haplotype is based on the rank of its
average estimated frequency over all the EM iterations.
The buffer size—that is, the total number of candidate
partial haplotypes in a buffer—is kept as a constant in
the PL process. Not surprisingly, our simulation study
based on the cystic fibrosis data showed that, the larger
the buffer size is, the more accurate the phasing results
are (for details, see fig. A1 [online only, at J. S. Liu’s
Web site]).

Niu et al. (2002) observed a modest performance
improvement when recombination hotspots were used
as the partition sites. Recently, hotspot-detection al-
gorithms, such as a greedy algorithm (Patil et al. 2001)
and a dynamic programming approach (Zhang et al.
2002), have been developed. Our PL-EM program can
incorporate the information revealed by such algo-
rithms by allowing the user to specify desirable parti-
tion points (for details and download of the PL-EM
program, see J. S. Liu’s Web site). We also conducted
an empirical study on the effects that different partition
sizes, K, have when hotspot information is absent. Al-
though little difference in phasing performance was ob-
served when three different partition sizes were used—
3–4, 5–8, or 9–16 (see fig. A2 [online only, at J. S. Liu’s
Web site])—we found that the computation time in-
creased sharply when the coarsest partition was used.
Overall, K p 5–8 appeared to be a good choice for
the atomistic unit size.

Several EM-based algorithms—including HAPLO
(Hawley and Kidd 1995), Arlequin (Schneider et al.
2000), and the Mx program (Neale et al. 1999)—pro-

vide the variance estimates for the estimated haplotype
frequencies. However, since these methods handle no
more than ∼20 loci, their variance-estimation method
cannot be directly used by the PL-EM program. Instead,
we implemented with the PL-EM program a simple and
robust approach, to estimate the variances or SEs of the
frequencies of those haplotypes that were selected at the
final ligation stage.

Let Y be the observed genotype data, Z be the missing
phase information, and v be the vector of haplotype
frequencies. As noted by Louis (1982), the Hessian ma-
trix of v can be computed via an identity analogous to
the variance-decomposition rule,

2 2� log p(vFY) � log [p(vFY,Z)]
� p E � FYv { }2 2�v �v

� log [p(vFY,Z)]
�var FY , (1)v { }�v

and the variance-covariance matrix of the MLE, , is thev̂

inverse of this matrix evaluated at . The first term onv̂

the right-hand side of equation (1) can be computed as

2� log [p(vFY,Z)]
E � FY{ }( )2�v i,j

( ) ( )E n FY E n FYi m
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where m is the number of all candidate haplotypes, ni

is the number of occurrences of haplotype i in Z, and
the expectation is taken for the ni (which is a function
of Z) with v fixed at the MLE. The second term on the
right-hand side needs the variance-covariance matrix of

� log p(vFY,Z) n n n n n n1 m 2 m m�1 m…p � , � , , � .( )�v v v v v v v1 m 2 m m�1 m

The calculation of , for example, can becov (n ,n )i j

achieved by observing in each individual the proba-
bility of the joint occurrence of haplotypes i and j.

In the presence of many heterozygous loci, some rare
haplotypes with very low frequencies are likely to occur.
Then, the inversion of the Hessian matrix becomes
computationally burdensome and numerically unstable.
Since scientists are mostly concerned with the variance
of each instead of covariances among the s, we in-ˆ ˆv vi i

troduce a new, robust method of computing these mar-
ginal variances. Take , for example: by applyingˆvar(v )1
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Table 1

Application of PL-EM on the LPL Data

HAPLOTYPE ID

RESULTS FROM

Jackson, MS
( ; )N p 24 k p 28

North Karelia, Finland
( ; )N p 24 k p 20

Rochester, MN
( ; )N p 23 k p 22

01000001000000000100000 H1 .063 (.035) .219 (.059) .348 (.069)
01000001100000000100000 H2 … .073 (.039) .045 (.031)
00100110100000000000000 H3 .146 (.051) … .043 (.030)
00100110100000010001100 H4 .104 (.044) … …
00100110000000010000000 H5 .063 (.035) … …
10101000011111110011101 H6 .063 (.035) … …
00100001000000000100000 H7 … .146 (.051) .023 (.023)
01000110000000000000000 H8 .021 (.021) .125 (.048) …
00100000111111100011100 H9 … .083 (.040) …
10111100111111111011111 H10 … … .087 (.042)

NOTE.—The LPL data are based on a study by Nickerson et al. (1998). A total of 88 sites in the 7.9-kb
region have been reported among the 71 individuals. Of these 88 biallelic markers, 23 met the following two
criteria: (1) minor-allele frequency 120% and (2) marker missing data !2%. Both PL-EM and HAPLOTYPER
were applied, to phase the entire 71 subjects by using only these 23 markers. N and k represent the sample
size and the number of distinct haplotypes, respectively. Numbers shown in parentheses represent SEs of the
frequency estimates. PL-EM appears to output almost the same number of haplotypes as does HAPLOTYPER
( , , and vs. , , and , for the Jackson, North Karelia, and Rochesterk p 28 k p 20 k p 22 k p 28 k p 19 k p 22
samples, respectively). The number of distinct haplotypes is greatest in the Jackson sample (African Americans)
and is smallest in the North Karelia sample (white Europeans). The Rochester sample shares H1 and H3 with
the Jackson sample and shares H1, H2, and H7 with the North Karelia sample, indicating that this American-
white population may be the result of admixture between black and European-white populations.

equation (1) to a reparameterization of the model with
and , we have′ ′′v p (v ,1 � v ) v p (v , … ,v )/(1 � v )1 1 2 m 1

2� log p(v FY)1� F2 ˆv pv1 1�v1
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Thus, is equal to the reciprocal of the above quan-ˆvar(v )1

tity. Note that the new method and Louis’s method give
identical variance estimates if the inversion of the Hes-
sian matrix (eq. [1]) is accurate. Intuitively, the first term
on the right-hand side of equation (2) is the standard
variance estimate when there is no uncertainty in phas-
ing, and the second term accounts for the loss of infor-
mation because of unknown phases.

An example of the SE calculation for estimated haplo-
type frequencies is shown, in table 1, for the LPL data
from Nickerson et al. (1998). This example also illustrates
that haplotypes can shed new light on population migra-
tion and admixture. To better understand the properties
of the estimated SEs, we conducted a simulation study
using the 12 distinct haplotypes from the b2-adrenergic
receptor (b2AR) data set. Assuming that the 12 haplotypes
have equal frequencies (1/12), we simulated 100 data sets,
each consisting of 90 hypothetical individuals. The PL-

EM algorithm was applied to each of the data sets, and
a 95% CI for each was constructed on the basis of thev̂

estimated frequencies and SEs (i.e., ). The num-ˆ ˆv � 1.96j

ber of times (in 100 trials) that the 95% CI covered the
true frequency ( ) for the 12 haplotypes was 92,v p 1/12
88, 93, 96, 97, 96, 88, 93, 94, 92, 95, and 94, which
average to 93.2%. For the purpose of calibration, we note
that the average coverage of the true v was only 93.1%
when the haplotype phase information was given.

The presence of a significant portion of missing ge-
notypes is a common problem when a great number of
linked loci are under investigation. This missing-data
problem poses a serious challenge to the existing EM hap-
lotype-inference algorithms, even when the total number
of SNP loci is moderate. In the case of missing two allele
calls at one locus, for example, all three different genotype
configurations—(AA), (Aa), and (aa)—have to be ac-
counted for by the algorithm, which greatly inflates the
space of candidate haplotypes. As a consequence, the stan-
dard EM algorithm not only needs a lot more memory
but also converges much more slowly. The PL-EM al-
gorithm resolves this difficulty seamlessly because of its
adoption of the divide-conquer-combine strategy.

It often occurs that, for some individuals with a large
number of heterozygous loci, numerous haplotype pairs
(each with a nonzero probability) are compatible with
their genotype data. In this case, generating all compatible
haplotype phases with nontrivial probabilities is more de-
sirable than outputting only the best phase. There is some
evidence (X. Lu and J. S. Liu, unpublished data) showing
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Figure 1 Histograms of the average error rates based on either individual phase calls (open bars) or the proportion of incorrectly inferred
loci (shaded bars), for ACE (A), b2AR (B), CFTR (C), and coalescence-simulation (D) data. For the ACE data, there are a total of 52 biallelic
markers for 11 subjects (Rieder et al. 1999), and 100 independent runs for each algorithm were performed. For the b2AR data, 15 haplotype
pairs (each pair corresponding to one subject) were randomly drawn from a total of 10 distinct haplotypes according to their respective
frequencies, as shown by Drysdale et al. (2000); this procedure was repeated to generate a total of 100 simulated data sets. For the CFTR data,
the 100 data sets were generated by randomly pairing 56 of the 57 complete haplotypes of the 23 linked SNPs in a 1.8-Mb region near the
CFTR gene provided by Kerem et al. (1989). The coalescence simulation was done using the Long Lab’s algorithm. A total of 100 replications
were performed for a regional size of 10 U of 4Nc, each of which consisted of 20 pairs of unphased chromosomes with 20 linked SNP loci.
The error bars are shown as �1 SE, for the new version of PHASE, HAPLOTYPER, and PL-EM. An asterisk (*) indicates that the old version
of PHASE was used for this data set, because its performance is better than that of the new version.

that, by accounting for the phasing uncertainty, one can
gain accuracy in LD mapping when using the algorithm
BLADE (Liu et al. 2001; this algorithm employs a semi-
hidden Markov model and a Markov-chain Monte Carlo
method, for inference of the location of the disease mu-
tation among a given set of linked markers with known
genetic distances in a case-control setting). To accom-
modate this need of multiple-haplotype imputation, the
PL-EM program can let the user choose to display either

the top f most likely phases (if existing) for each individual
or all phases with probabilities 10.1.

We evaluated the performances of PL-EM, HAPLO-
TYPER (Niu et al. 2002), and an enhanced version of
PHASE (Stephens et al. 2001), using the angiotensin I–
converting enzyme (ACE) data set, the b2AR gene data
set, the cystic fibrosis transmembrane conductance reg-
ulator (CFTR) gene data set, and data sets produced by
coalescence model–based haplotype-simulation software
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(see the Long Lab’s Web site [Tools: Statistical Analysis
and Molecular Biology Tools]). All these data sets were
constructed in the same way, as described by Niu et al.
(2002). The results are summarized in the left panels of
figure 1. The PL-EM program’s error rate for individuals’
phasing is comparable to HAPLOTYPER, but is lower
than PHASE in the first three cases, which is consistent
with the studies described by Niu et al. (2002). For the
coalescence simulation, PL-EM and HAPLOTYPER re-
spectively made 35% and 11% more errors than PHASE.
Note that Stephens et al. (2001) reported that the EM
algorithm made ∼100% more errors than PHASE, indi-
cating that PL-EM performed significantly better than the
standard EM algorithm when the coalescence assumption
is appropriate.

To investigate further how the inference errors were
made by the three algorithms, we looked into the fol-
lowing two aspects: (1) how the incorrectly inferred
haplotypes differ from the true ones and (2) whether
different algorithms made errors on the same individ-
uals. For the first three data sets, PL-EM appeared to
produce the least amount of incorrectly inferred loci for
those wrongly inferred haplotypes, whereas, for the co-
alescent-based simulated data, PL-EM and HAPLO-
TYPER respectively produced 36% and 7% more in-
correctly inferred loci than did PHASE (fig. 1, right
panels). In the first three cases, most of the errors made
by HAPLOTYPER and PL-EM appeared to be a subset
of the errors made by PHASE (see fig. A3 [online only,
at J. S. Liu’s Web site]).

In summary, the PL-EM algorithm can deal with a large
number of linked loci that have moderate levels of LD.
It is capable of variance estimation, multiple imputation,
and the handling of incomplete genotype data. In addi-
tion, PL-EM was faster than HAPLOTYPER in these ex-
amples, even with the variance estimation. Hence, in prac-
tice, if a coalescence model for the population haplotypes
is too strong to assume, then PL-EM can be an attractive
alternative to HAPLOTYPER, further helping scientists
in the haplotype-reconstruction endeavor.
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Alcohol Dehydrogenase and Alcohol Dependence:
Variation in Genotype-Associated Risk between
Populations

To the Editor:
Osier et al. (2002) report that haplotyping of the alcohol
dehydrogenase (ADH) gene cluster at 4q21-23 showed
unusually high values for Fst, an estimator of population
differentiation. This was largely due to differences be-
tween populations in East Asia and those in other areas
of the world. The finding was discussed in relation to
the origin and maintenance of the distinct East Asian
haplotype and in relation to possible association be-
tween genetic variation at this locus and the risk of
alcohol dependence (MIM 103780). This letter draws
attention to a potentially related difference between pop-
ulations, in the magnitude of the alcohol depen-
dence risk associated with the ADH1B (MIM 103720)
Arg47His polymorphism (previously referred to as
“ADH2*2”). One possible explanation for such a dif-
ference in risk is the presence of linkage disequilibrium
between this marker and an undiscovered causative
polymorphism, with the effect being stronger in East
Asians and the relative risk associated with ADH1B
Arg47His variation consequently being greater.

To update a previous meta-analysis of the effects of
ADH polymorphisms (Whitfield 1997), articles report-
ing on ADH1B genotypes in control and alcohol-de-
pendent subjects were identified by Medline search or
from knowledge of data in conference proceedings, with
elimination of articles in which subjects overlapped.
Data from eight of the articles previously analyzed (all
those listed in table 1 and published before 1997) and
from nine new articles, were included. Information on

ADH1B Arg47His genotypes in control and alcohol-
dependent subjects was extracted. Data on alcohol-
dependent subjects with known liver disease were ex-
cluded, because of the possibility that ADH1B variation
may affect the risk of liver damage in alcoholics. Odds
ratios were calculated from stratified 2 # 2 tables, using
StatXact 5 (Cytel Software), with tests for heterogeneity
across studies and estimation of common odds ratios.
Whenever possible, two 2 # 2 tables were compiled
from each article: one for the ADH1B*47Arg/*47Arg
versus ADH1B*47Arg/*47His genotype comparison
and the second for comparison of ADH1B*47Arg/
*47His against ADH1B*47His/*47His.

Data from each article, exact odds ratios, and their
95% CIs are shown in table 1. For the ADH1B*47Arg/
*47Arg versus ADH1B*47Arg/*47His (ADH2*1/*1
versus ADH2*1/*2) comparison, there was significant
heterogeneity of odds ratios across all the studies (P !

). Division of studies into those from Europe (in-.0001
cluding Russia and Australia) and those from Asia, with
separate analyses for the two groups, showed no evi-
dence of within-group heterogeneity among Europeans
( ), and the estimated common odds ratio wasP p .397
2.11 (95% CI 1.32–3.44). However, there was still sig-
nificant heterogeneity ( ) among Asian studies.P ! .0001
Inspection of the data suggested that results from Jap-
anese and from Han Chinese groups were similar,
whereas the minority ethnic groups within China, as well
as Koreans, had lower odds ratios. As can be seen in
table 1, the Han Chinese and the Japanese groups had
very similar common odds ratios associated with
ADH1B*47Arg/*47Arg compared with ADH1B*47Arg/
*47His, which were substantially above those for Eur-
opeans and most of the other Asian groups.

The calculated odds ratios for ADH1B*47Arg/
*47His against ADH1B*47His/*47His (ADH2*1/*2
versus *2/*2) are also shown in table 1. There was no
significant heterogeneity between studies ( ),P p .405
and the estimated common odds ratio was 1.43 (95%
CI 1.23–1.66). The difference in alcohol-dependence risk
is therefore greater for ADH1B*47Arg/*47Arg versus
ADH1B*47Arg/*47His than for ADH1B*47Arg/
*47His versus ADH1B*47His/*47His, at least in
the mainly East Asian populations in which the
ADH1B*47His allele frequency is high enough to allow
a meaningful comparison.

Two conclusions may be drawn from this summary
of published results. First, the ADH1B*47His allelic
effects on alcohol dependence risk are not additive.
Heterozygotes are clearly more similar in risk to
the ADH1B*47His/*47His homozygotes than to the
ADH1B*47Arg/*47Arg homozygotes, and so the
ADH1B*47His allele shows quantitative (but not com-
plete) dominance. Proposed mechanisms for the ADH1B
Arg47His effect on dependence need to account for this
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